Identification of the clinical most relevant bacteria for blood and blood components

Result of expert consultation meeting organized by the European Centre for Disease Prevention and Control (ECDC)¹

Literature review¹

List of confirmed and probable transmissions of bacterial infections from published reviews and original research in the English language

46 fatalities

Step 2

Selecting most frequently transmitted bacteria for ranking exercise

origin in Europe, D. Domanovic et all, TRANSFUSION 2017;57;1311–1317

Step 2

Selecting most frequently transmitted bacteria for ranking exercise

14 bacteria

Streptococcus β-hemolyticus

> Klebsiella spp.

Enterococcus spp.

Serratia spp.

Pseudomonas spp.

Responsible for:

Enterobacter spp.

Clostridium spp.

Mycobacterium.

tuberculosis

Escherichia coli

(---)Yersinia spp.

Staphylococcus aureus

> Staphylococcus (non-aureus)

Bacillus cereus

84% transmissions

> 93% fatalities

Step 3 Prioritization of clinically most relevant bacteria

RISK OF TRANSMISSION: reflects an overall prevalence of bacterial transmissions through substances of human origin (SoHO) in the EU adjusted for a given bacteria by a frequency of reported cases of transmission or contamination and survival during processing and storage.

Step 3 Prioritization of clinically most relevant bacteria

RISK OF TRANSMISSION: reflects an overall prevalence of bacterial transmissions through substances of human origin (SoHO) in the EU adjusted for a given bacteria by a frequency of reported cases of transmission or contamination and survival during processing and storage.

SEVERITY OF DISEASE: reflects virulence, toxins production by multiplying during a storage, and survival of a given bacteria after transmission. Health consequences, expressed in disability-adjusted life-year (DALYs) per case, are assessed according to the loss of life, permanent disability, and seriousness of illness.

Step 3 Prioritization of clinically most relevant bacteria

RISK OF TRANSMISSION: reflects an overall prevalence of bacterial transmissions through substances of human origin (SoHO) in the EU adjusted for a given bacteria by a frequency of reported cases of transmission or contamination and survival during processing and storage.

SEVERITY OF DISEASE: reflects virulence, toxins production by multiplying during a storage, and survival of a given bacteria after transmission. Health consequences, expressed in disability-adjusted life-year (DALYs) per case, are assessed according to the loss of life, permanent disability, and seriousness of illness.

ANTIMICROBIAL RESISTANCE: reflects a probability that a given bacteria is resistant to antimicrobials that is assessed from reported prevalence in the EU, resistance to single or multiple antimicrobials, and trend in the past 4 years developing resistance.

Step 3 Prioritization of clinically most relevant bacteria

RISK OF TRANSMISSION: reflects an overall prevalence of bacterial transmissions through substances of human origin (SoHO) in the EU adjusted for a given bacteria by a frequency of reported cases of transmission or contamination and survival during processing and storage.

SEVERITY OF DISEASE: reflects virulence, toxins production by multiplying during a storage, and survival of a given bacteria after transmission. Health consequences, expressed in disability-adjusted life-year (DALYs) per case, are assessed according to the loss of life, permanent disability, and seriousness of illness.

ANTIMICROBIAL RESISTANCE: reflects a probability that a given bacteria is resistant to antimicrobials that is assessed from reported prevalence in the EU, resistance to single or multiple antimicrobials, and trend in the past 4 years developing resistance.

THREAT EVOLUTION: reflects a probability expressed in the percentage that the magnitude of the threat posed by a given pathogen doubles in the next 5 years.

Step 3 Prioritization of clinically most relevant bacteria

RISK OF TRANSMISSION: reflects an overall prevalence of bacterial transmissions through substances of human origin (SoHO) in the EU adjusted for a given bacteria by a frequency of reported cases of transmission or contamination and survival during processing and storage.

SEVERITY OF DISEASE: reflects virulence, toxins production by multiplying during a storage, and survival of a given bacteria after transmission. Health consequences, expressed in disability-adjusted life-year (DALYs) per case, are assessed according to the loss of life, permanent disability, and seriousness of illness.

ANTIMICROBIAL RESISTANCE: reflects a probability that a given bacteria is resistant to antimicrobials that is assessed from reported prevalence in the EU, resistance to single or multiple antimicrobials, and trend in the past 4 years developing resistance.

THREAT EVOLUTION: reflects a probability expressed in the percentage that the magnitude of the threat posed by a given pathogen doubles in the next 5 years.

Step 4 Final result ranking exercise

Priority Ranking Pathogen

Probability of transmission

Severity of disease

1. Prioritizing of bacterial infections transmitted through substances of human origin in Europe, D. Domanovic et all, TRANSFUSION 2017;57;1311–1317

Very high

Step 4 Final result ranking exercise

Priority	Ranking	Pathogen	Probability of transmission	Severity of disease	Antii res
Tiond	1	Staphylococcus aureus			
	2	Streptococcus b-hemolyticus			

1. Prioritizing of bacterial infections transmitted through substances of human origin in Europe, D. Domanovic et all, TRANSFUSION 2017;57;1311–1317

Very high

ih 🛑

Step 4 Final result ranking exercise

Priority	Ranking	Pathogen	Probability of transmission	Severity of disease	Anti res
Tior 1	1	Staphylococcus aureus			
THEFT	2	Streptococcus b-hemolyticus			
	3	Klebsiella spp.			
	4	Escherichia coli			
Tier 2	5	Pseudomonas spp.			
	6	Enterobacter spp.			
	7	Yersinia enterocolitica			

1. Prioritizing of bacterial infections transmitted through substances of human origin in Europe, D. Domanovic et all, TRANSFUSION 2017;57;1311–1317

Very high

Step 4 Final result ranking exercise

Priority	Ranking	Pathogen	Probability of transmission	Severity of disease	Anti res
Tior 1	1	Staphylococcus aureus			
iler i	2	Streptococcus b-hemolyticus			
	3	Klebsiella spp.			
	4	Escherichia coli			
Tier 2	5	Pseudomonas spp.			
	6	Enterobacter spp.			
	7	Yersinia enterocolitica			
	8	Acinetobacter spp.			
Tior 2	9	Staphylococcus (non-aureus)			
Tier 5	10	Serratia spp.			
	11	Clostridium spp.			

1. Prioritizing of bacterial infections transmitted through substances of human origin in Europe, D. Domanovic et all, TRANSFUSION 2017;57;1311–1317

Very high

Step 4 Final result ranking exercise

Priority	Ranking	Pathogen	Probability of transmission	Severity of disease	Anti res
Tior 1	1	Staphylococcus aureus			
	2	Streptococcus b-hemolyticus			
	3	Klebsiella spp.			
	4	Escherichia coli			
Tier 2	5	Pseudomonas spp.			
	6	Enterobacter spp.			
	7	Yersinia enterocolitica			
	8	Acinetobacter spp.			
Tior 2	9	Staphylococcus (non-aureus)			
THE S	10	Serratia spp.			
	11	Clostridium spp.			
	12	Enterococcus spp.			
Tier 4	13	M. tuberculosis			
	14	Bacillus spp.			

1. Prioritizing of bacterial infections transmitted through substances of human origin in Europe, D. Domanovic et all, TRANSFUSION 2017;57;1311–1317

Very high

Step 4 Final result ranking exercise

Priority	Ranking	Pathogen	Probability of transmission	Severity of disease	Anti res
Tior 1	1	Staphylococcus aureus			
	2	Streptococcus b-hemolyticus			
	3	Klebsiella spp.			
	4	Escherichia coli			
Tier 2	5	Pseudomonas spp.			
	6	Enterobacter spp.			
	7	Yersinia enterocolitica			
	8	Acinetobacter spp.			
Tior 2	9	Staphylococcus (non-aureus)			
THE S	10	Serratia spp.			
	11	Clostridium spp.			
	12	Enterococcus spp.			
Tier 4	13	M. tuberculosis			
	14	Bacillus spp.			

1. Prioritizing of bacterial infections transmitted through substances of human origin in Europe, D. Domanovic et all, TRANSFUSION 2017;57;1311–1317

Very high

Moderately high

"Bacteria ranked in tiers 1 and 2 represent a substantial threat to the safety of blood and blood components."¹

Total number of peer reviewed publications

1. Mirasol[®] Pathogen Reduction Technology (PRT) System

2. Peer reviewed publications only, no abstracts

3. References peer reviewed publication, see slide 22

Extend of inactivation (log reduction)												
4	5	6	7	8	9	10						

> 4 log

	ECDC				Puk	olished p	oatho	gen ina	ctivatio	on data ²						
Pric	ority	Ranking	Organism	System	PI Data	N° studies ³				Extend	of inac	ctivation (log re	duction)			
							1	2	3	4	5	6	7	8	9	10
- Tie	ər 1	1	Staphylococcus aureus	INTERCEPT	~	4					>5	6,1 6,6				>10
		2	Streptococcus pyogenes	INTERCEPT	~	2					>5	>6,	8			
Tie	er 2	3	Klebsiella pneumoniae	INTERCEPT	~	2						>5,6 >6				
	4		Escherichia Coli	INTERCEPT	✓	3						>6,2 >6	4		>9	
		5	Pseudomonas aeruginosa	INTERCEPT	✓	1				4,5						
	6		Enterobacter cloacae	INTERCEPT	✓	1						5,9				
			Yersinia enterocolitica	INTERCEPT	~	2					>5	>5,9				
Tot	tal nun	nber of pe	er reviewed publications	INTERCEPT		15				> 4 log		I				

1. Mirasol[®] Pathogen Reduction Technology (PRT) System

2. Peer reviewed publications only, no abstracts

3. References peer reviewed publication, see slide 22

EC	DC		Published pathogen inactivation data ²												
Priority	Ranking	Organism	System	PI Data	N° studies ³				Extend	of inactiva	tion (log re	duction)			
						1	2	3	4	5	6	7	8	9	10
Tier 1	1	Staphylococcus aureus	INTERCEPT	~	4					>5	6,1 6,6				>10
	2	Streptococcus pyogenes	INTERCEPT	~	2					>5	>6,	8			
Tier 2	3	Klebsiella pneumoniae	INTERCEPT	~	2					>5,6	>6				
	4	Escherichia Coli	INTERCEPT	~	3						>6,2 >6	,4		>9	
	5	Pseudomonas aeruginosa	INTERCEPT	~	1				4,5						
	6	Enterobacter cloacae	INTERCEPT	~	1						5,9				
	0	Enterobacter cioacae	MIRASOL ¹	X	0				No pe	er reviewed	d data publi	shed			
	7	Yersinia enterocolitica	INTERCEPT	~	2					>5 >5,	9				
Total nu	mber of pe	er reviewed publications	INTERCEPT		15				> 4 log						

1. Mirasol[®] Pathogen Reduction Technology (PRT) System

2. Peer reviewed publications only, no abstracts

3. References peer reviewed publication, see slide 22

	ECDC				Puk	olished p	athog	gen inac	tivatio	n data ²						
	Priority	Ranking	Organism	System	PI Data	N° studies ³				Extend	of inact	tivation (log r	eduction)		
							1	2	3	4	5	6	7	8	9	10
	Tier 1	1	Staphylococcus aureus	INTERCEPT	~	4					>5	6,1 6,6				>10
		2	Streptococcus pyogenes	INTERCEPT	~	2					>5	>6	,8			
	Tier 2	3	Klebsiella pneumoniae	INTERCEPT	~	2					>	>5,6 >6				
		4	Escherichia Coli	MIRASOL ¹	✓ ✓	2 3		2,7 2	2,8			>6,2 >0	6,4		>9	
		5	Pseudomonas aeruginosa	INTERCEPT	~	1				4,5						
		6	Enterobacter cloacae	INTERCEPT	~	1						5,9				
		.			X	0				No pe	er revie	wed data pub	lished			
		7	Yersinia enterocolitica	MIRASOL ¹	✓✓	1			3,3		>5	>5,9				
	Total number of peer		er reviewed publications	INTERCEPT		15				> 4 log						

1. Mirasol[®] Pathogen Reduction Technology (PRT) System

2. Peer reviewed publications only, no abstracts

3. References peer reviewed publication, see slide 22

EC	DC			Published pathogen inacti								
Priority	Ranking	Organism	System	PI Data	N° studies ³							
						1	2		3			
	1	Stanby/agagaya auraya	INTERCEPT	~	4							
Tier 1	I	Staphylococcus aureus	MIRASOL ¹	~	2							
	2		INTERCEPT	~	2							
	2	Streptococcus pyogenes	MIRASOL ¹	~	2			2,6				
	0		INTERCEPT	~	2							
Tier 2	3	Kiedsiella pheumoniae	MIRASOL ¹	~	2		2,7	2,8				
			INTERCEPT	~	3							
	4	Escherichia Coli	MIRASOL ¹	~	4							
			INTERCEPT	~	1							
	5	Pseudomonas aeruginosa	MIRASOL ¹	~	1							
	0		INTERCEPT	~	1							
	6	Enterobacter cloacae	MIRASOL ¹	x	0							
			INTERCEPT	~	2							
	(Yersinia enterocolitica	MIRASOL ¹	~	1							
Total nu	mber of per	ar reviewed nublications	INTERCEPT		15							
Total number of pee		er reviewed publications	MIRASOL ¹		12							

1. Mirasol[®] Pathogen Reduction Technology (PRT) System

2. Peer reviewed publications only, no abstracts

3. References peer reviewed publication, see slide 22

vation data²

	EC	DC		Published pathogen ina									
	Priority	Ranking	Organism	System	PI Data	N° studies ³							
							1	2	3				
		4	Starshyle and a una una	INTERCEPT	~	4							
•	Tier 1	Ĩ	Staphylococcus aureus	MIRASOL ¹	~	2							
		0		INTERCEPT	~	2							
		2	Streptococcus pyogenes	MIRASOL ¹	~	2			2,6				
		2	Klabajalla proumaniaa	INTERCEPT	~	2							
-	Tier 2	3		MIRASOL ¹	~	2		2,7	2,8				
		Λ	Escherichia Coli	INTERCEPT	\checkmark	3							
		4	Eschenchia Coll	MIRASOL ¹	~	4							
		Б	Recudomonae coruginosa	INTERCEPT	\checkmark	1							
		5	Pseudomonas aeruginosa	MIRASOL ¹	\checkmark	1							
		6	Entorobactor alagaaa	INTERCEPT	\checkmark	1							
		0	Enterobacter cioacae	MIRASOL ¹	X	0							
		7	Varsinia antaracalitica	INTERCEPT	\checkmark	2							
		7	fersinia enterocontica	MIRASOL ¹	~	1							
	Total nu	mber of pe	er reviewed publications	INTERCEPT		15							
				MIRASOL ¹		12							

1. Mirasol[®] Pathogen Reduction Technology (PRT) System

2. Peer reviewed publications only, no abstracts

3. References peer reviewed publication, see slide 22

Mirasol: For ~43 % of the clinically most relevant bacteria the extent of inactivation is "< 4 log" or "no peer reviewed data" have been published

vation data²

Would you like to know more? Ask access to the **INACTIVATION APP**

contact@cerus.com

Pathogen inactivation data - References peer reviewed publication

Priority	Ranking	Organism	INTERCEPT		Mirasol ¹	
			Reference	Extent of inactivation (log reduction)	Reference	Extent of inactivation (log reduction)
			Schmidt M et al., Transfusion, 2015	>5	Kwon SY et al., Vox Sanguinis, 2014	4,26
Tier 1	1	Staphylococcus aureus	Nath Makroo et al., Asian Journal of Transfusion Science, 2018	>6,1	Keil SD et al., J. Vis. Exp., 2015	4,8
			Irsch J et al., Transfusion Medicine and Hemotherapy, 2011	6,6		
			Kwon SY et al., Vox Sanguinis, 2014	>10		
	-	Streptococcus puodenes	Schmidt M et al., Transfusion, 2015	>5	Keil SD et al., J. Vis. Exp., 2015	2,6
	2	Silepiococcus pyogenes	Irsch J et al., Transfusion Medicine and Hemotherapy, 2011	>6,8	Bello-López et al., Transfusion Clinique et Biologique, 2018	>6
Tier 2	3	Klebsiella pneumoniae	Irsch J et al., Transfusion Medicine and Hemotherapy, 2011	>5,6	Bello-López et al., Transfusion Clinique et Biologique, 2018	2,7
		·	Schmidt M et al., Transfusion, 2015	>6	Keil SD et al., J. Vis. Exp., 2015	2,8
			Nath Makroo et al., Asian Journal of Transfusion Science, 2018	>6,2	Ruane HP et al., Transfusion, 2004	>4,4
	4	Escherichia Coli	Irsch J et al., Transfusion Medicine and Hemotherapy, 2011	>6,4	Keil SD et al., J. Vis. Exp., 2015	>5,4
			Kwon SY et al., Vox Sanguinis, 2014	>9	Kwon SY et al., Vox Sanguinis, 2014	5,45
					Bello-López et al., Transfusion Clinique et Biologique, 2018	>6
	5	Pseudomonas aeruginosa	Irsch J et al., Transfusion Medicine and Hemotherapy, 2011	4,5	Keil SD et al., J. Vis. Exp., 2015	4,7
	6	Enterobacter cloacae	Irsch J et al., Transfusion Medicine and Hemotherapy, 2011	5,9	No peer reviewed data	a published
	7	Versinia enterocilituse	Schmidt M et al., Transfusion, 2015	>5	Keil SD et al., J. Vis. Exp., 2015	3,3
	1	reisinia enterochityca	Irsch J et al., Transfusion Medicine and Hemotherapy, 2011	>5,9		

cerusô

