Affordable production of pathogen inactivated platelet concentrates
Is it possible to implement pathogen inactivation in a cost neutral (or even cost saving) way?

- Introduction
- Automated production of buffy coat derived platelets (BCPs) (based on 2014)
- Why pathogen inactivation?
- Challenges!
- Manual production of BCPs in combination with pathogen inactivation (based on 2015)
- Changes and their effect
- Lessons learned
- Future improvements
- Summary and conclusions
Introduction to the blood process at Karolinska

Collection of **80,000** whole blood units (WB) a year.

Production of **9,000** units of buffy coat platelets (BCPs)
(In addition: 1,500 apheresis platelets)
Blood collection
- 4 fixed donation sites and 5 mobile units
- From 7.30 am – 7 pm, Monday – Saturday

Transport to the **Unit of Blood Component Production, Huddinge**
- On cooling plates in isolated boxes
- Our own designated drivers
- 2 – 3 times a day from each site
Fractionation
- WB arrives between 12 pm – 8.30 pm
- 5 - 6 persons 12:30 pm - 9 pm (evening shift)
- 1 – 2 persons 7 pm – 6 am (night shift)
- No over-night storage of WB

One production line
- One production site
- One blood bag system (NTP6280LE, MacoPharma)
- One centrifugation program
- One press (Macopress Smart Revo, Macopharma)
 + one separation program

Simple and effective!
- One production line
- 100% (RBCs + plasma + BC)

Maximum number of available buffy coats!
2014 – What did our BCP procedures look like?

Production summary
– **8,669** production procedures
– **8,669** produced BCPs

Production system
– **OrbiSac** System (automated)
– **Single doses** (5 BC + 300 mL PAS-E)

Safety measures
– **100%** γ-irradiated BCPs
– Bacterial screening with **eBDS** (enhanced Bacterial Detection System)

% safety measures at transfusion:

- **22 %** none
- **23 %** started
- **55 %** completed
2014 – What did our BCP procedures look like?

Quality

BCPs
- 342 ± 32 × 10⁹ plt/unit
- 359 ± 13 mL

RBCs
- 46 ± 4 g Hb/unit
- 253 ± 14 mL

Plasma
- 248 ± 15 mL

Staff

- 2 persons for BCP production (8 am – 4.30 pm)
- 1 person for safety measure (8 am – 4.30 pm)

Storage time

- 7 days with eBDS
- 5 days without eBDS

Outdating rate

- 5.5%

We aim for an outdating rate of 6 – 8% to avoid a shortage of platelets.
2014 – Timeline

DAY 0
8 AM - 2 PM
BCP production
OrbiSac

DAY 1
2:30 PM
Release

DAY 2
2:30 PM - 4 PM
Irradiation
8 AM - 12 AM
Safety measure
eBDS - start

DAY 3
From 8 AM
Safety measure
eBDS - finished

Single dose
8,669
BCP procedures

100%
22% No eBDS
55% eBDS completed
23% eBDS not completed
Why did we want to change production system?

- We wanted to implement pathogen inactivation as a safety measure, because
 - It is cool!
 - It is part of modern blood banking technology
 - Possibility to reduce risk of spreading new viruses and other pathogens
 - Faster safety measures to allow 100% of BCPs to be treated before transfusion

- Also:
 - OrbiSac was falling apart
 - Spare parts were hard to find

...so we needed to change our production system anyway – and why not aim for something safer?
What were the criteria for implementation?

- Criteria imposed by The Department of Clinical Immunology and Transfusion Medicine:
 - **Production + safety measure** must not be more expensive than the present production system.
 - **No new staff** could be hired.
 - **Quality** must still be above quality limits.

There was a real challenge in meeting these criteria!
But then again… who can resist a good challenge?

We gave it a shot!
What needed to be done to keep it economically viable?

- The INTERCEPT™ Blood System was the pathogen inactivation system of choice
- To be affordable it had do be combined with production of double dose BCPs (DD-BCPs)

What is a DD-BCP?

A platelet concentrate with:

- double the amount of platelets
- double the volume of a BCP.

The DD-BCP is Intercept-treated and after treatment divided into two transfusion units of BCP.
However …

There is a **volume limit** for the INTERCEPT™ treatment!
- Max: 420 mL
- Min: 385 mL

Challenge!

Increase concentration of platelets in the concentrate so that it contains enough platelets for two transfusion doses in a smaller volume than before!!!
What do our BCP procedures look like now?

Production summary
- 4,632 production procedures
- 9,264 produced BCPs

Production system
- **Manual** production:
 - Pooling
 - Centrifugation
 - Separation on automatic blood component separator
- **Double doses**
 (8 BC + 280 mL PAS-E)

Safety measures
- Pathogen inactivation with INTERCEPT™ Blood System
- 2% γ-irradiated BCPs

% safety measures at transfusion:
- 2 % none
- 98 % completed
2015 – What do our BCP procedures look like now?

Quality

BCPs
- 239 ± 40 × 10⁹ plt/unit
- 189 ± 40 mL

RBCs
- 46 ± 4 g Hb/unit
- 255 ± 13 mL

Plasma
- 246 ± 15 mL

Storage time
- 7 days with PI
- 5 days for γ-irradiated BCPs

Staff
- 3 persons for BCP production/start of safety measure (8 am – 4.30 pm)
- 1 person for finishing safety measure (12.30 pm – 9 pm)

Outdating rate
- 5.5 %

We aim for an outdating rate of 6 – 8 % to avoid a shortage of platelets.
2015 – Timeline

DAY 0 → DAY 1 → DAY 2

8 AM - 11 AM
BCP production
Manual

9:30 AM - 12 PM
Pathogen inactivation
Start

4 PM - 9 PM
Pathogen inactivation
Finished
Division
Release

4,632
BCP procedures

2% irradiated

98 % INTERCEPT™

2x single doses

All done in the same day!
<table>
<thead>
<tr>
<th>Comparison</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BCP produced</td>
<td>8,669 a year</td>
<td>9,264 a year</td>
</tr>
<tr>
<td>Production system</td>
<td>Automatic system</td>
<td>Manual system</td>
</tr>
<tr>
<td></td>
<td>Single doses</td>
<td>Double doses</td>
</tr>
<tr>
<td></td>
<td>5 BC PAS-E</td>
<td>8 BC PAS-E</td>
</tr>
<tr>
<td>Safety measures</td>
<td>eBDS™</td>
<td>INTERCEPT™</td>
</tr>
<tr>
<td>Storage time</td>
<td>7 days with safety measure</td>
<td>7 days with safety measure</td>
</tr>
<tr>
<td>Outdating rate</td>
<td>5.5 %</td>
<td>5.5 %</td>
</tr>
<tr>
<td>Staff</td>
<td>2 + 1 persons</td>
<td>3 + 1 persons</td>
</tr>
<tr>
<td>Quality</td>
<td>$342 \pm 32 \times 10^9$ plt/unit</td>
<td>$239 \pm 40 \times 10^9$ plt/unit</td>
</tr>
</tbody>
</table>
Changes and their effect!

- Manual production instead of automated
 - ↓ 21 % material cost
 - ↑ +8 % cost for extra quality control

- Double dose compared to single dose
 - ↓ PLT content from 342 to 239×10^9 plt/unit
 - However... transfusion quality unchanged
 - limit: >200×10^9 plt/unit
 - ~7800 BCP transfusions both 2014 and 2015.

- Shorter procedure for safety measures (6 hrs vs 16+24 hrs)
 - 1 extra shift required
 - ↑ +10 % labour cost

- One less BC per transfusion unit
 - more available raw material
 - possible to produce more BCPs
Overall results

Safety measures
- The % of BCPs that are subjected to safety measures increased from 55 % to 98 %, mostly due to shorter overall production time.

\[+43\% \]

Gamma irradiation
- Only 2 % of BCPs are \(\gamma \)-irradiated, since the rest are pathogen inactivated.

\[-98\% \]

Bacterial sepsis
- No adverse effects due to bacterial sepsis since implementation of PI. 2 cases reported during previous 24 months.

\[-100\% \]

Cost / BCP unit
- Overall cost savings are 16%.

\[-16\% \]

No. of transfusions
- Platelets per unit -30%
- Number of BCP transfusions is unchanged → same clinical effectiveness

\[\pm 0\% \]
Are we satisfied?

YES!

Can we do better?

YES!
Lessons learned

– Manual systems:
 – More sensitive to fluctuation.
 – Harder to standardise.

Changing from an automated to a manual system requires:
– More time spent on instructing and supervising the staff
– Frequent status check-ups and feedback loops

– Procedures that work well in a small scale are not necessarily optimal for a larger production scale.

It is important to:
– Monitor the process closely and detect early signs that it needs adjustment
– Encourage the staff who work in the everyday process to suggest improvements.
Future improvements

– **Improve raw material**
 – **Harder centrifugation of WB**
 – Increased recovery of platelets in BCs
 – Fewer BCs per transfusion unit
 – More efficient use of resources

– **Revise SOPs**
 – further *standardise* procedures
 – get rid of *unnecessary steps*

– **Further education** of production staff
 – deeper *understanding* of the process
 – reduce risk of *shortcuts*
Future improvements

- Optimisation of **packing** in the **centrifugation liners**.
 - Pivotal for platelet **volume** and **colour**

- Optimisation of the **pooling bag**.
 - **New bag** streamlined for our production

- **LEAN**

 - Prolong incubation to **16 hrs** → **reduce labour costs**
 - 6 hrs incubation → **3** day persons + **1** evening person
 - 16 hrs incubation → **2** day persons + **1** evening person

- Reduction of extra quality control based on previous experience
To answer the initial question...

It is absolutely possible to implement pathogen inactivation in a cost neutral way.

We even did it cost saving!!

Starring: Hanna-Stina Ahlzén and Linda Larsson
Fabulous photo: Liza Larsson
...and a huge THANK YOU to all our fantastic storm troopers of the Unit of Blood Component Production
Acknowledgements

Karolinska University Hospital
Maria Matl
Beatrice Diedrich
Micael Kaarlenkaski
Stella Larsson
Per Sandgren
Liza Larsson
Mazen Al Waili

Cerus
Fredrik Persson
Filip de Groof
Eleonore Tennby
Marius Witzoe